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ABSTRACT: Principal component regression (PCR), par-
tial least squares (PLS), StepWise ordinary least squares
regression (OLS), and back-propagation artificial neural
network (BP-ANN) are applied here for the determination
of the propylene concentration of a set of 83 production
samples of ethylene–propylene copolymers from their
infrared spectra. The set of available samples was split
into (a) a training set, for models calculation; (b) a test set,
for selecting the correct number of latent variables in PCR
and PLS and the end point of the training phase of BP-
ANN; (c) a production set, for evaluating the predictive
ability of the models. The predictive ability of the models
is thus evaluated by genuine predictions. The model
obtained by StepWise OLS turned out to be the best one,

both in fitting and prediction. The study of the breakdown
number of samples to be included in the training set
showed that at least 52 experiments are necessary to build
a reliable and predictive calibration model. It can be con-
cluded that FTIR spectroscopy and OLS can be properly
employed for monitoring the synthesis or the final product
of ethylene–propylene copolymers, by predicting the con-
centration of propylene directly along the process
line. � 2008 Wiley Periodicals, Inc. J Appl Polym Sci 109: 3975–
3982, 2008
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INTRODUCTION

Ethylene–propylene elastomers1,2 constitute a family
of amorphous products whose properties are due to
the high flexibility of the macromolecular chain.

Ethylene–propylene rubbers and elastomers (called
EPDM and EPM) continue to be one of the most widely
used and fastest growing synthetic rubbers, having
both specialty and general-purpose applications.

Ethylene–propylene rubbers are valuable for their
excellent resistance to heat, oxidation, ozone, and
weather aging because of their stable, saturated
polymer backbone structure. Properly black pig-
mented and non-black compounds are color stable.
As non-polar elastomers, they have good electrical
resistivity as well as resistance to polar solvents,
such as water, acids, alkalies, phosphate esters, and
many ketones and alcohols. Amorphous or low crys-
talline grades have excellent low temperature flexi-
bility with glass transition points of about 2608C.

The variation of composition and the varied distri-
bution of the monomeric units imply different appli-
cative characteristics: from here the necessity of gain-
ing structural information related to the properties
of the polymer under investigation.

EPM suppliers use different test methods to char-
acterize polymers. The most widespread method to
determine the molecular composition of EPM, and
the only one recognized by the American Society of
Testing of Materials (ASTM), is the infrared method
ASTM D 3900.3

In this article, a procedure is proposed consisting
in the calibration of infrared spectroscopic data
using reference data obtained by 13C NMR analysis.4

The final target of this work is the development of
multivariate regression models relating the infrared
spectrum of a selected type of polymer to propylene
concentration in EPM copolymers.

In other words, the use of a different analytical
approach usually employed in the NIR region has
been evaluated for the determination of the mono-
mer concentration using the entire infrared MIR
range, without limiting the calculation to the ratio
between infrared bands (classic approach of ASTM
D 3900).
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Different ‘‘hard’’ regression methods were
employed to calculate the propylene concentration:
principal component regression (PCR),5 partial least
squares (PLS),6–11 and StepWise regression (SWR) in
forward search.12,13

Finally, the supervised back-propagation neural
networks (BP-ANN)14–16 were applied and the
results were compared to those obtained by the pre-
vious methods. The possible application of ANNs
was tested here to verify the presence of nonlinear
effects that cannot be modeled through the other lin-
ear regression tools investigated.

This multivariate approach has already been suc-
cessfully applied by our research group to other
industrial problems.17,18

THEORY

Quantitative methods for monomer determination
of EPM

Infrared spectroscopy

IR test method ASTM D 39003 covers the determina-
tion of the proportion of ethylene and propylene in
copolymers and terpolymers over a range from 35 to
65% w/w of ethylene.

This test exploits the ratio between the absorbance
of methyl groups from propylene units at 8.65 lm
(1156 cm21) versus the absorbance of methylene
sequences from ethylene units at 13.85 lm (722
cm21). A series of known EPM polymers (whose
concentration is determined through 13C NMR spec-
troscopy) is used to build a calibration curve of
A8.65/A13.85 versus % w/w of ethylene:

Ethylene concentration ð%Þ ¼ a� b lnðA8:65=A13:85Þ

where a and b are the regression coefficients to be
calculated.

The % propylene is obtained as complement to
100.

The % ethylene necessary to build the calibration
curve is obtained by NMR spectroscopic determina-
tions carried out on a set of samples covering the
overall range of concentration.

13C NMR spectroscopy

13C nuclear magnetic resonance spectrometry was
then used to determine the molecular composition of
a set of EPM standards: the NMR method4 is the
same used in ASTM D 3900 to determine the mono-
mer concentration of the reference samples.

A typical spectrum 13C NMR of an EPM is
reported in Figure 1: the spectrum was recorded by
a Bruker-Avance 300 NMR spectrometer (7.2 T). The
polymer was dissolved in 1,1,2,2,-tetrachloroethane-
d2 (C2D2Cl4). Chemical shifts are given relative to
hexametyldisilane (0.037 ppm with respect to TMS).
A delay time of 10 s between the 908 13C pulses was
used; scans: 6600; spectral range: 12,000 Hz, temper-
ature: 1208C.

The number written next to each spectral peak is
related to the allocation of the chemical shift
reported in Table I: primary, secondary, and tertiary
carbons are labeled, respectively, P, S, and T; in
addition, the two Greek letters in the subscripts
define the position of the carbon relative to the near-
est tertiary carbons in the chain. The method fol-
lowed to determine the monomer concentration is
based on the combination of the signal areas of pri-
mary and secondary carbons.

The % of ethylene and propylene are then com-
puted as

Mol% ethylene ¼ ðN0 �N1Þ
ðN0 þN1Þ 3 100

Mol%propylene ¼ ð2N1Þ
ðN0 þN1Þ 3 100

where

N0 ¼ total number ofmethylenes

¼ ðSaa þ Sab þ 3Sbb þ 2Sbg þ 5Sgg þ 3Sgb þ SddÞ
N1 ¼ total number ofmethyls ¼ ðPbb þ Pbg þ PggÞ

PLS and PCR

PCR and PLS regression are multivariate statistical
projection methods. Model components are extracted
in such a way that the first principal component
(PC) contains the largest amount of information, fol-
lowed by the second PC, etc.

The optimal number of PCs modeling useful infor-
mation but avoiding overfitting is determined with
the help of the residual variances in prediction.

Figure 1 A typical spectrum 13C NMR of a generic EPM.
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In PCR, a PC analysis is first performed on X,
then a regression model is built relating the PCs on
X to the Y variable. In PCR, therefore, the definition
of X components is determined prior to the regres-
sion analysis, and the Y variables not playing a role
at this stage.

PLS is a method where information in the original
X-data is projected into a small number of underlying
(‘‘latent’’) variables called PLS components. The Y-
data are actively used in estimating the ‘‘latent’’ vari-
ables to ensure that the first components are the most
relevant ones for predicting the Y variables. Interpre-
tation of the relationship between X-data and Y-data
is then simplified as this relationship in focused on
the smallest possible number of components.

StepWise ordinary least squares regression

SWR is the more exploited method to select a small
number of variables from the original data. Here, the
forward selection (FS) approach was used: it starts
with a model where no variables are included and
gradually adds a variable at a time until a deter-
mined criterion of arrest of the procedure is satisfied.
The variable being included in the model in each
step is the one providing the greatest value of the
iterative F-Fisher ratio; in other words, the jth vari-
able is included in the model with p variables al-
ready included if

Fþj ¼ maxj
RSSp � RSSpþj

S2
pþj

" #
> Fin

where, S2
pþj

is the variance calculated for the model
containing p variables plus variable j; RSSp ¼P

p ðyp � ŷpÞ2 is the residual sum of squares of the
model with p variables. RSSpþj is the residual sum of
squares of the model with p variables plus variable j.

The F value calculated is compared to a reference
value (Fin), usually set at values ranging from 1 to 4 :
1 corresponding to a more permissive selection,
including in the final model a larger number of varia-
bles, while 4 corresponds to a more severe selection.

Artificial neural network

Artificial neural networks are mathematical algo-
rithms that can be used to solve complex problems
by simulating the function of the human brain. They
are mainly dedicated to modeling the behavior of
complex systems, where they usually provide better
results than ordinary least squares (OLS), especially
when nonlinear relationships are present.

Supervised BP-ANN build models, classify pat-
terns, and make predictions according to patterns of
input/output they have learned.

The back-propagation network is the most popular
ANN used for calibration; it consists of

� An input layer, where each neuron is associated
to an experimental variable (in this case the
wavelengths of the infrared spectrum);

� One or more hidden layers with a variable num-
ber of neurons;

TABLE I
Chemical Shift of the 13C NMR Peaks of Figure 1

Peak Carbon type Chemical shift Sequence Integration limits

1 Saa 48.1–45.3 Saa 48.50–44.50
2 Sag 38.8 r 2 Sag
3 Sad 38.4 r 2 Sad 40.00–36.50
4 Sag 37.96 m 2 Sag 1 m 2 Sag
5 Sad 37.58 m 2 Sad 1 m 2 Sad
6 Sab 35.7 r 2 Sab 36.20–34.30
7 Sab 34.9 m 2 Sab 1 m 2 Sab
8 Tgg 33.9 Tgg

9 Tgd 33.6 Tgd 34.29–32.80
10 Tdd 33.3 Tdd

11 Tbg 31.2 Tbg (m) 1 Tbg (r)
12 Tbd 30.9 Tbd (m) 31.91–30.61
13 Sgg 30.8 Sgg 1 Tbg (r)a

14 Sgd 30.4 Sgd 30.61–30.23
15 Sdd 30.0 Sdd 30.23–29.32
16 Tbb 28.8–28.5 Tbb (mm) 1 Tbb (mr1rr) 29.15–28.22
17 Sbg 27.85 Sbg 28.22–27.63
18 Sbd 27.45–26.30 Sbd 27.63–26.63
19 Sbb 24.9 Sbb 25.60–23.95
20 Pbb 22.0–21.3 Pbb (mm)
21 Pbg 21.3–20.6 Pbb (mr) 1 Pbg (m) 1 Pbd(m) 22.50–19.00
22 Pgg 20.6–19.5 Pbb(rr) 1 Pbg (r) 1 Pbd (r) 1 Pgg

a Sggis obtained by the formula [(Sbd 2 Pgd)/2].
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� An output layer, where each neuron is associated
to a response (in this case the propylene concen-
tration).

In the feed forward back-propagation training
algorithm, the signal moves from the input layer to-
ward the output layer (Fig. 2). In this process, each
neuron uploads all the neurons of the following
layer, transferring a portion of the value (input) it
has accumulated. The portion of signal that is trans-
ferred is regulated by a transfer function.

The choice of the network architecture is very im-
portant because it determines the ability of the net-
work to predict unknown responses; it consists in
selecting the number of hidden layers, the number
of neurons in each hidden layer, the connection pat-
tern of each neuron and the specific transfer func-
tions to be applied between the different neuronal
layers (here, logistic transfer function).

Since a high number of original variables contrasts
with the use of ANNs (each variable corresponds to
an input neuron), it was necessary to reduce the size
of the spectral dataset. This was achieved here through
a smoothing procedure with step 10. This transforma-
tion reduces the number of wavelengths to 236.

The back propagation algorithm attempts to mini-
mize the difference (or error) between the desired and
actual output according to an iterative procedure. For
each iteration, the initial weights involved in the net-
work are adjusted by the algorithm, so that the error
is decreased along a descending direction. Two pa-
rameters, called learning rate (set here at 0.3) and mo-
mentum (set here at 0.3), are used for controlling the
size of weight adjustment along the descending direc-
tion and for dampening oscillations of the iterations.

The secret of building successful neural networks
is to know when to stop the training phase. In fact if
the net is trained for a too short time it will not learn
the data patterns while if the net is trained for too
long, it will learn the noise and memorize the data
by heart (overfitting). To solve the problem of over-
fitting, the validation procedure adopted is funda-
mental. Here, the dataset was split in three sets:

� Training set (48 samples), used for training the
network (model building);

� Test set (20 samples), used for selecting the end
of the training phase;

� Production set (15 samples), used for testing the
real predictive ability of the network.

The samples assigned to the test set were selected
from the training set so that they represent the entire
experimental domain: low, medium, and high con-
centration of propylene.

Index for estimating fitting and prediction ability

The fitting ability of artificial neural models and
regression models was evaluated by the coefficient
of multiple determination, R2, calculated as

R2 ¼ 1�

P
i¼1;n

ðŷi � yiÞ2P
i¼1;n

ðyi � �yÞ2
where

n 5 number of samples of the training set
ŷi 5 predicted value of the response of the ith
experiment
yi 5 experimental value of the ith experiment
�y 5 average response of n experiments.

This expression can be calculated using either the
experiments of the training set, R2(tr), leading to the
classical coefficient of multiple determination that
gives information on the model fitting ability, or the
experiments of the production set, R2(pro), which is
very effective for evaluating the predictive ability of
the model.

The root mean square error (RMSE) between the
measured and predicted values is estimated as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i ðŷi � yiÞ2
n

s

This parameter again can be calculated using both
the training (RMSEF, RMSE of fitting) or the produc-
tion (RMSEP, RMSE of prediction) set of experi-
ments, to achieve information about fitting and pre-
dictive ability, respectively.

EXPERIMENTAL

Dataset

The copolymers examined in this work are statistic
or random copolymers, i.e., polymeric chains in
which the monomeric units are randomly distrib-
uted; these polymers are completely saturated.

The copolymers dataset used for regression mod-
els, constituted by 83 samples obtained directly

Figure 2 Scheme of a typical BP-ANN.
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from the production plant, was divided into two
groups:

Sixty-eight samples in the training set (for the
construction of the model);
Eight subgroups with 10 samples in the test set
every time (systematic iterative procedure);
Fifteen samples in the production set (to calculate
the predictive ability of the model).
The copolymer samples correspond to the prod-
ucts obtained from the production in ‘‘Polimeri
Europa’’ company (Ferrara plant, Italy).

The 83 samples uniformly cover a range of propyl-
ene concentrations from 29 to 53% w/w.

IR and NMR spectroscopic determination of
monomer concentrations

For each sample the infrared spectrum in absorb-
ance19,20 was recorded from 5000 to 450 cm21 (2360
wavelengths).

IR spectra were recorded by a Perkin–Elmer FT-
Spectrum One System: 16 scans, resolution of 4

cm21, using a deuterated triglycine sulfate detector.
The absorbance infrared spectrum of a generic ethyl-
ene–propylene copolymer is shown in Figure 3. The
monomer concentration of the standard polymers
was determined through a 13C NMR4 method based
on the combination of spectral peaks. The NMR
determinations were carried out by a Bruker
Avance-300 spectrometer, collecting 6600 scans at
1208C with an angle of impulse of 908 using deuter-
ated tetrachloride–ethane (C2D2Cl4) as solvent.

RESULTS AND DISCUSSION

PCR and PLS

PCR and PLS were applied to the final data matrix
of size 83 3 2360 (83 being the samples and 2360
being the spectroscopic variables).

Figure 3 Example of spectrum IR of a generic copolymer
ethylene–propylene.

TABLE II
% Cumulative Explained Variance in Y of Each Principal

Component in PCR and PLS Model

Principal components

Y 2 % cumulative
variance

PCR PLS

PC1 0.13 67.91
PC2 48.70 79.28
PC3 50.86 95.90
PC4 51.63 96.98
PC5 91.36 97.91
PC6 93.94 98.76
PC7 94.75 99.15
PC8 95.92 99.34
PC9 96.35 99.56
PC10 96.49 99.68

TABLE III
Summary of R2 and RMSE for the Concentration of

Propylene with PCR and PLS Models

R2(tr) R2(pro) RMSEF RMSEP

PCR 0.94 0.96 1.67 1.61
PLS 0.98 0.96 0.81 1.43

Figure 4 PCR (a) and PLS (b) results: predicted versus
experimental concentration of propylene for training set (*)
and for production set (*). The straight lines represent the
target perfect accordance between predicted and experi-
mental responses. PLS shows better results both in fitting
and prediction, since both training and production set
points lay almost along the straight line.

CALIBRATION MODELS FOR QUALITY CONTROL 3979

Journal of Applied Polymer Science DOI 10.1002/app



Table II reports the % of cumulative explained
variance for PCR and PLS, respectively.

The first 7 PCs were retained as significant for
PCR and the first 6 PCs for PLS. They explain,
respectively, 94.75% and 98.76% of total variance.

Table III reports the R2 and RMSE values
obtained, both in fitting and prediction for the
regression procedures adopted. It can be noticed that
PCR and PLS models perform satisfactorily both in
fitting and prediction even if PLS guarantees the
best results. Figure 4 represents the predicted versus
experimental values for the samples of the training
set (represented as asterisks) and for those of the
production set (represented as circles) for PCR [Fig.
4(a)] and PLS models [Fig. 4(b)], respectively. Figure
4 shows that PLS [Fig. 4(b)] performs better than
PCR, both in fitting and prediction: for what regards
PLS in fact the samples lay almost along a line,
while more significant deviations from linearity can
be noticed for PCR.

PLS thus performs better both in fitting and in
prediction, when compared to PCR.

Figure 5 reports the regression coefficients
(expressing the relationship between variation in the
predictors and in the response) in the PCR (- - - line)
and PLS models (— line). The coefficients show the
relative importance of the X variables in the model
calculated by only the relevant PCs. A positive coef-
ficient shows a positive correlation with the response
(increasing the value of that variable, the response
increases), and a negative coefficient shows a nega-
tive correlation (increasing the value of that variable,
the response decreases). Predictors with a coefficient
around 0 are negligible.

The trends of the regression coefficients are very
similar in PCR and PLS.

Figure 5 shows that almost the same spectral
regions exhibit large coefficients on both PCR and
PLS models, as expected. An increase of the spectral
regions at 722 and 1500 cm21 corresponds to a
decrease of propylene concentration, while an

increase of the bands at 1371 cm21 corresponds to
an increase of propylene concentration.

It is important to point out that PLS and PCR
show that more spectral regions are important for
the determination of the propylene concentration of
copolymers respect to the method ASTM D 3900.

Stepwise OLS regression

A SWR was then carried out on the original varia-
bles and compared to the results obtained by PCR
and PLS. The StepWise procedure was applied with
a FS. The analysis gave effected with different Fin
(from 3 to 10) but all gave the same results. Here,
the results of the test with Fin 5 4 are shown.

Figure 5 Plot of regression coefficients in PCR and PLS.

Figure 6 Stepwise OLS results (Fin 5 4): predicted versus
experimental concentration of propylene for production set
(*). The straight line represents the target perfect accord-
ance between predicted and experimental responses. For
what regards prediction, OLS performs better than PCR
and PLS, since the objects of the production set lay better
along the straight line.

TABLE IV
Summary of R2 and RMSE for the Concentration
of Propylene of BP-ANNs with Different Number

of Neurons of Hidden Layer

236 neurons input layer;
1 neuron output layer;
logistic transfer function R2(tr) R2(pro) RMSEF RMSEP

2 neurons; hidden layer 0.96 0.92 1.42 2.21
3 neurons; hidden layer 0.99 0.94 0.62 1.80
4 neurons; hidden layer 0.99 0.98 0.47 0.99
5 neurons; hidden layer 0.99 0.95 0.51 1.74
6 neurons; hidden layer 0.99 0.96 0.54 1.52
7 neurons; hidden layer 0.99 0.97 0.48 1.31
8 neurons; hidden layer 0.99 0.96 0.53 1.51
9 neurons; hidden layer 0.99 0.94 0.68 1.82
10 neurons; hidden layer 0.99 0.97 0.57 1.39
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The procedure applied selected an optimal subset
of only six original variables at � 709, 941, 960, 1384,
2561, and 2830 cm21.

The experimental versus predicted concentration
of propylene for the production set of the StepWise
model with Fin 5 4 are shown in Figure 6.

The coefficients of multiple determination for the
training set and the production set with SWR are,
respectively, 0.99 and 0.99 while RMSEF 5 0.66 and
RMSEP 5 0.81.

In this case, SWR performed significantly better
than PCR and PLS, in fact improvements are
observed both in fitting and predictive ability.

Back-propagation network

Artificial neural networks21–28 were applied to the
dataset of copolymers to verify the possible existence
of nonlinear effects that cannot be accounted for by
linear methods as PCR, PLS, and StepWise OLS.

Different architectures were tried here changing
number of neurons in the hidden layer. Table IV
reports the R2 and RMSE values obtained, both in
fitting and prediction of BP-ANNs with different
number of neurons in the hidden layer. It can be
noticed that the best results were obtained selecting
one hidden layer containing four neurons.

The experimental versus predicted concentration
of propylene of the production set for the best net-
work is shown in Figure 7.

For what regards the R2 values, the BP-ANN
model performs better, both in fitting and prediction
with respect to PCR and PLS models.

The BP-ANN with respect to Stepwise OLS does
not succeed to improve the error committed neither
in fitting (RMSEF 5 0.47) nor in prediction (RMSEP
5 0.99).

Table V reports the R2 and RMSE values obtained
both in fitting and prediction for all multivariate sta-
tistical tools adopted.

The results obtained prove that StepWise OLS is
the best method for this specific application and pro-
vides very good results in particular for what
regards its predictive ability (it guarantees lower
RMSEs lower).

Breakdown number of samples for model
calculation

Finally, the stability of the best calibration model so
far obtained as a function of the number of samples
of the training set was investigated. The ‘‘breakdown
number of samples’’ means how many samples in
the training set are necessary for attaining a calibra-
tion model that is able to explain the information in
the data and predict correctly the value of the
response (propylene concentration) of the samples in
the production set. This was evaluated by gradually
reducing the number of samples in the training set;
in particular, groups of eight samples were elimi-
nated every time. The samples removed for each
cycle were selected in such a way that all the experi-
mental domains were represented in the training set
(low, medium, and high propylene concentration).

The trend of the coefficient of multiple determina-
tion [Fig. 8(a)] and RMSE [Fig. 8(b)] of the training
and the production sets as a function of the number
of groups of samples eliminated from the training
set are shown in Figure 8.

Figure 8(a) shows that the model predictive ability
(R2 (pro)) decreases progressively, as expected, with
the reduction of the number of samples present in
the training set. In particular, a model built with 52
samples loses the ability to generalize and to predict
satisfactorily (high RMSEP, Fig. 8(b)] when com-
pared to a model with 68 samples in the training set.
This means that a higher number of samples is nec-
essary to be able to predict the propylene concentra-
tion of unknown samples with Step Wise OLS.

Figure 7 BP-ANN results: predicted versus experimental
concentration of propylene for production set (*). The
straight line represents the target perfect accordance
between predicted and experimental responses. BP-ANN
shows better results for the production set if compared to
PCR and PLS models, since the points are better distrib-
uted along the straight line. The results are however com-
parable to OLS model.

TABLE V
Summary of R2 and RMSE for the Concentration of

Propylene with all the Regression Procedures Adopted

R2 (tr) R2(pro) RMSEF RMSEP

PCR 0.94 0.96 1.67 1.61
PLS 0.98 0.96 0.81 1.43
StepWise OLS 0.99 0.99 0.66 0.81
BP-ANN 0.99 0.98 0.47 0.99
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CONCLUSIONS

The final target of this work was the development of
multivariate regression models relating the infrared
spectrum of ethylene/propylene copolymers to the
propylene concentration in the macromolecule.

It can be asserted that it is possible to take advant-
age of FT-IR spectroscopy for the determination of
the concentration of propylene in copolymers.

Usually calibration methods on copolymers
involve the use of NIR spectroscopy, but in this par-
ticular case, very good results were obtained using
the complete MIR spectral range.

The model obtained with StepWise OLS, Table V,
regression turned out to be the best one is in fitting
is in prediction (R2(pro) 5 0.99 and RMSEP 5 0.81),
provided sufficient samples are available to calculate
a stable and reliable model.

The ANN, trained through the back-propagation
algorithm, does not provide better results compared
to StepWise OLS. Moreover, ANNs require relatively
long calculation times.

V.L. kindly thanks the ‘‘Polimeri Europa’’ (Ferrara) for
having granted a scholarship for deepening the knowledge
in the fields of chemometrics and polymers.
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Figure 8 Trend of R2 for training set and production set
(a) and trend of RMSE for training and production set (b).
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